[an error occurred while processing this directive],  [an error occurred while processing this directive]
Références
Articles scientifiques



-
        Assad, C., et al. (1999) Electric organ discharges and electric images during electrolocation. J.Exp.Biol. 202 (Pt 10), 1185-1193.

-        Bastian, J. (1999) Plasticity of feedback inputs in the apteronotid electrosensory system. J.Exp.Biol. 202 (Pt 10), 1327-1337.

-        Bastian, J., and Bratton, B. (1990) Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe. J Neurosci 10, 1226-1240.

-        Bastian, J., et al. (2002) Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. J Neurosci 22, 4577-4590.

-        Bastian, J., et al. (2004) Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 41, 767-779.

-        Benda, J., et al. (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25, 2312-2321.

-        Berman, N.J., and Maler, L. (1999) Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. J.Exp.Biol. 202, 1243-1253.

-        Bratton, B., and Bastian, J. (1990) Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe. J Neurosci 10, 1241-1253.

-        Carr, C.E., et al. (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. J Comp Neurol 211, 139-153.

-        Chacron, M.J., et al. (2003) Non-classical receptive field mediates switch in a sensory neuron's frequency tuning. Nature 423, 77-81.

-        Doiron, B., et al. (2003) Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature 421, 539-543.

-        Dunn, R.J., et al. (1999) Molecular biology of the apteronotus NMDA receptor NR1 subunit. J.Exp.Biol. 202 (Pt 10), 1319-1326.

-        Engler, G., and Zupanc, G.K. (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol [A] 187, 747-756.

-        Few, W.P., Zakon, H. (2001) Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency. Horm Behav. 40, 434-42.

-       Graff, C., et al. (2004) Fish perform spatial pattern recognition and abstraction by exclusive use of active electrolocation. Curr Biol 14, 818-823.

-        Heiligenberg, W. (1990) Electrosensory systems in fish. Synapse 6, 196-206.

-        Heiligenberg, W. (1991) Recent advances in the study of electroreception. In Curr Opin Neurobiol, 187-191

-        Heiligenberg, W., and Bastian, J. (1984) The electric sense of weakly electric fish. Annu Rev Physiol 46, 561-583.

-        Hopkins, C.D. (1999) Design features for electric communication. J Exp Biol 202, 1217-1228.

-      Kirschbaum, F., and Schugardt, C. (2002) Reproductive strategies and developmental aspects in mormyrid and gymnotiform fishes. J Physiol Paris 96, 557-566.

-        Maler, L., et al. (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J.Chem.Neuroanat. 4, 1-38.

-        McAnelly, M., Zakon, H. (2000) Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ. J Neurosci. 20, 3408-14.

-      Metzner, W. (1993) The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways. J.Neurosci. 13, 1862-1878.

-        Metzner, W. (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J.Exp.Biol. 202 (Pt 10), 1365-1375.

-      Moller, P. (2002) Multimodal sensory integration in weakly electric fish: a behavioral account. J Physiol Paris 96, 547-556.

-       Montgomery, J., et al. (1995) Hindbrain Sensory Processing In Lateral Line, Electrosensory, and Auditory Systems: A Comparative Overview of Anatomical and Functional Similarities. Auditory Neuroscience 1, 207-231.

-       Nelson, M.E., and MacIver, M.A. (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J.Exp.Biol. 202 (Pt 10), 1195-1203.

-        Nilsson, G. (1996) Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. J Exp Biol 199, 603-607.

-        Oestrich, J (2006) A "Sample-to-Hold" Pulse-Counting Integrator as a Machanism for Graded Memory underlying Sensorimotor Adaptation. Neuron, 49, 577-588.

-        Oswald, A.M., et al. (2004) Parallel processing of sensory input by bursts and isolated spikes. J Neurosci 24, 4351-4362.

-        Oswald, A.M., et al. (2002) Dynamically interacting processes underlie synaptic plasticity in a feedback pathway. J.Neurophysiol. 87, 2450-2463.

-        Piccolino, M., and Bresadola, M. (2002) Drawing a spark from darkness: John Walsh and electric fish. Trends Neurosci 25, 51-57.

-        Rasnow, B., et al. (1993) Phase and amplitude maps of the electric organ discharge of the weakly electric fish, Apteronotus leptorhynchus. J.Comp Physiol [A] 172, 481-491.

-        Rose, G.J. (2004) Insights into neural mechanisms and evolution of behaviour from electric fish. Nat Rev Neurosci 5, 943-951.

-        Smith, G.T., et al. (2000) Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish. J Comp Neurol 423, 427-439.

-        Smith, G.T., and Zakon, H.H. (2000) Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish. J.Neurobiol. 42, 270-286.

-        Stoddard, P.K. (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400, 254-256.

-        Turner, R.W., and Maler, L. (1999) Oscillatory and burst discharge in the apteronotid electrosensory lateral line lobe. J.Exp.Biol. 202, 1255-1265.

-        Turner, R.W., et al. (1994) TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron. J.Neurosci. 14, 6453-6471.

-        Turner, R.W., et al. (1996) Oscillatory and burst discharge across electrosensory topographic maps. J.Neurophysiol. 76, 2364-2382.

-        Unguez, G.A.; Zakon, H.H. Skeletal muscle transformation into electric organ in S. macrurus depends on innervation. J Neurobiol. (2002) vol.53, no.3, pp.391-402.

-        Vischer, H.A. (1989) The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). II. The electroreceptive lateral-line system. Brain Behav.Evol. 33, 223-236.

-        Vischer, H.A., et al. (1989) Development of the electrosensory nervous system in Eigenmannia (Gymnotiformes): I. The peripheral nervous system. J.Comp Neurol. 290, 16-40.

-        Zakon, H., et al. (1998) Sensory cells determine afferent terminal morphology in cross-innervated electroreceptor organs: implications for hair cells. J Neurosci 18, 2581-2591.

-        Zakon, H., et al. (1999) Plasticity of the electric organ discharge: implications for the regulation of ionic currents. J.Exp.Biol. 202, 1409-1416. 

-        Zakon, H., et al. (2002) EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. J Physiol Paris 96, 451-458.

-        Zakon, H.H. (2003) Insight into the mechanisms of neuronal processing from electric fish. Curr Opin Neurobiol 13, 744-750.

-        Zupanc, G.K. (2002) From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. J Physiol Paris 96, 459-472.

 

Références
.  "Articles scientifiques."  Apteronote. Ed. Erik Harvey-Girard. Ottawa: Mai 28, 2005. <  >

© Droits réservés